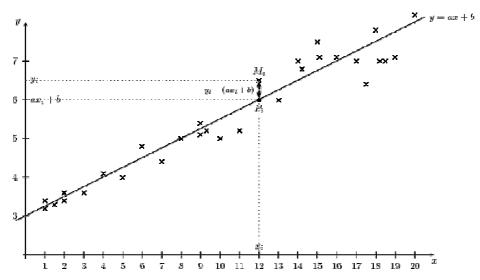
Droite des moindres carrés

1 - PREAMBULE

Dans bien des situations il est courant d'avoir à sa disposition deux ensembles de données de taille n, $\{y_1, y_2,, y_n,\}$ et $\{x_1, x_2,, x_n,\}$, obtenus expérimentalement ou mesurés sur une population.

On peut alors se proposer de rechercher un modèle mathématique représentant ces ensembles, c'est-à-dire rechercher une relation de la forme y = f(x) pouvant éventuellement exister entre les x_i et les y_i .

Lorsque la relation recherchée <u>semble être</u> affine, c'est-à-dire de la forme $y = a \cdot x + b$, on parle de régression linéaire.



2 - CRITERE POUR DEFINIR LA DROITE

Considérons une droite « quelconque » d'équation $y=a\cdot x+b$. Prenons maintenant un point $M_i(x_i,y_i)$ du nuage de point. Dans le cas général, le point M_i n'appartient pas à la droite, c'est-à-dire que ses coordonnées ne vérifie pas l'équation qu'on s'est donné : $y_i \neq a \cdot x_i + b$.

Il y a donc un écart entre les ordonnées des points M_i (du nuage) et P_i (de la droite) qui ont la même abscisse x_i . Et ceci est généralement vrai pour tous les point du nuage !

Soit e_i l'écart d'ordonnée entre les points M_i et P_i : on a : $e_i = y_{p_i} - y_{M_i}$.

On pose alors comme critère la droite qui, parmi toutes, minimise la somme des carrés des écarts.

3 – COEFFICIENTS a ET b DE LA DROITE

Partant du critère énoncé, on montre que les paramètres de l'équation de la droite se calculent ainsi :

$$a = \frac{N\sum_{n=1}^{N} (n \times D_n) - \sum_{n=1}^{N} n \cdot \sum_{n=1}^{N} D_n}{N\sum_{n=1}^{N} n^2 - (\sum_{n=1}^{N} n)^2}$$

$$b = \frac{\sum_{n=1}^{N} D_n}{N} - a. \frac{\sum_{n=1}^{N} n}{N}$$